
On Repairing Natural Language to SQL Queries
Aidan Z.H. Yang3∗ , Ricardo Brancas1 and Pedro Esteves1 and Sofia Aparicio2 and Joao Pedro

Nadkarni2 and Miguel Terra-Neves2 and Vasco Manquinho1 and Ruben Martins3
1 INESC-ID, IST - Universidade de Lisboa, Portugal

2 OutSystems, Portugal
3 Carnegie Mellon University, USA

{ricardo.brancas,pedro.f.esteves,vasco.manquinho}@tecnico.ulisboa.pt1,
{sofia.aparicio,joao.nadkarni,miguel.neves}@outsystems.com2, {aidanyan,rubenm}@andrew.cmu.edu3

Abstract
Data analysts use SQL queries to access and ma-
nipulate data on their databases. However, these
queries are often challenging to write, and small
mistakes can lead to unexpected data output. Re-
cent work has explored several ways to automati-
cally synthesize queries based on a user-provided
specification. One promising technique called text-
to-SQL consists of the user providing a natural lan-
guage description of the intended behavior and the
database’s schema. Even though text-to-SQL tools
are becoming more accurate, there are still many in-
stances where they fail to produce the correct query.
In this paper, we analyze when text-to-SQL tools
fail to return the correct query and show that it is
often the case that the returned query is close to a
correct query. We propose to repair these failing
queries using a mutation-based approach that is ag-
nostic to the text-to-SQL tool being used. We eval-
uate our approach on two recent text-to-SQL tools,
RAT-SQL and SmBoP, and show that our approach
can repair a significant number of failing queries.

1 Introduction
Data analysts are usually domain experts, but they often
lack the programming skills to write their own code for data
manipulation or to query databases. Hence, several low-
code platforms for software development have been built
that use high-level interfaces for users to specify their in-
tent. In these platforms, user intent can be specified by either
a natural language description [Yaghmazadeh et al., 2017;
Wang et al., 2020; Rubin and Berant, 2021] or input-output
examples [Wang et al., 2017; Orvalho et al., 2020; Take-
nouchi et al., 2021].

In recent years, several new approaches have been pro-
posed to improve text-to-SQL tools [Wang et al., 2020;
Lin et al., 2020; Rubin and Berant, 2021; Scholak et al., 2021;
Gan et al., 2021; Cao et al., 2021; Shi et al., 2021]. The user
gives as input a database and a description in natural language
of the desired task. The text-to-SQL tool is able to return a
query that matches the user’s intent. For instance, consider

∗Contact Author

that a user has a database of airlines and gives the text-to-
SQL tool the following natural language description: “Find
the name of the airline which runs the most number of routes”.
Ideally, a text-to-SQL returns the following SQL query:

SELECT airlines.name, routes.alid
FROM routes JOIN airlines

ON routes.alid = airlines.alid
GROUP BY airlines.name
ORDER BY Count(*) DESC
LIMIT 1

Text-to-SQL tools can solve problems of this kind of diffi-
culty and have an accuracy of over 70% on public datasets.1
However, despite its recent improvements, these tools still fail
to provide the correct query in many situations.

In this paper, we start by analyzing the failing cases of
text-to-SQL tools and make the key observation that even
when text-to-SQL tools return a wrong query, the structure
of the query is often correct. We use this insight to repair
these failing cases with a mutation-based approach. When
the text-to-SQL fails to synthesize a correct query, we ask the
user for a complementary input-output example that will be
used by our repair tool. We mutate the failing query until
the output of the repaired query matches the example pro-
vided by the user. Our experimental evaluation shows that we
can repair a large number of failing queries for two text-to-
SQL tools, RAT-SQL [Wang et al., 2020], and SmBoP [Ru-
bin and Berant, 2021]. Moreover, our approach also out-
performs PATSQL [Takenouchi et al., 2021], a state-of-the-
art programming-by-example (PBE) synthesizer for SQL that
uses examples, showing that we can successfully leverage the
failing queries from text-to-SQL tools. We summarize our
contributions below.

1. Key observation through an experimental analysis that
when text-to-SQL tools return an incorrect query, it is
often the case that the structure of the query is correct.

2. Using our observation, we propose a mutation-based ap-
proach to repair queries agnostic to the text-to-SQL tool.

3. We evaluate our approach on the Spider dataset1 and
show that it can repair a large number of queries.

1https://yale-lily.github.io/spider

ar
X

iv
:2

31
0.

03
86

6v
1

 [
cs

.D
B

]
 5

 O
ct

 2
02

3

https://yale-lily.github.io/spider

4. We show that our approach outperforms and is comple-
mentary to PBE SQL synthesizers and improves the ac-
curacy of text-to-SQL tools from 70% to over 90%.

2 Motivation
Recently, there has been a plethora of approaches using nat-
ural language processing to automatically synthesize SQL
queries from text [Wang et al., 2020; Lin et al., 2020;
Rubin and Berant, 2021; Scholak et al., 2021; Gan et al.,
2021]. These approaches encode database relations using
text-to-SQL encoders and have shown to have more than 70%
accuracy on public datasets such as Spider [Yu et al., 2018].
Spider is a large, complex, and cross-domain semantic pars-
ing and text-to-SQL dataset. Even though text-to-SQL tools
have shown remarkable performance, they do not always pro-
duce correct solutions. The goal of this work is to repair in-
correct outputs into correct solutions. To motivate our repair
technique, we first attempt to answer the following question:

When text-to-SQL tools fail to find a correct query, how
close is it to a solution?

To answer the motivating question, we use the popular
text-to-SQL tool RAT-SQL [Wang et al., 2020], which uses
relation-aware self-attention to map schema entities to SQL
question words. We ran RAT-SQL on 6358 queries from the
Spider training dataset, and analyzed what happens when it
fails to find a correct query. The Spider dataset contains a pos-
sible solution for each query, which we denote by gold query.
RAT-SQL returned a query2 whose outputs do not match the
gold query on 1197 of the 6358 (19%) instances.

We compare each of the 1197 faulty queries to its corre-
sponding gold query as a string and as a query structure to
determine how close the query is to a correct solution.

2.1 String Analysis
To determine whether the incorrect queries are significantly
different from the correct version, we start by analyzing the
RAT-SQL queries as strings with the gold query strings. We
first normalize both strings by removing the capitalization
and spaces. We then remove the table references for each
column constant (e.g., “airline.names” becomes “names”).
Finally, we calculate the edit distance [Ristad and Yianilos,
1998] between each incorrect query and its ground truth.

Figure 1 shows the distribution of edit distances between
the RAT-SQL query and the gold query. We observe that 36%
of queries have an edit distance larger than 60, suggesting
that some queries are not close to the ground truth. However,
we also observe that 38% of RAT-SQL incorrect queries have
edit distance below 20, with 18% of the queries having an
edit distance below 5. Our results suggest that when RAT-
SQL fails, many queries are close to the gold query.

Even though string analysis gives us an intuition about the
the failing cases, it is imprecise. To further strengthen our hy-
pothesis, we also analyzed the structure of the failing queries.

2Even though RAT-SQL can return more than one query for a
given natural language description, for this analysis we will consid-
ered the first query returned by RAT-SQL.

0%

10%

20%

30%

0 50 100 150 200 250
Edit Distance

Figure 1: Distribution of RAT-SQL edit distances

2.2 Structure Analysis
To analyze the structure of the queries, we start by defining
the query structure of a SQL query in Definition 1.

Definition 1 (Query Structure) Given a simple SQL query
of the form:

SELECT A1, A2, ..., An
FROM R1, R2, .., Rm
WHERE P

Then its corresponding query structure corresponds to:

SELECT #1, #2, ..., #n
FROM #(n+1), #(n+2), ..., #(n+m)
WHERE #(n+m+1)

The SQL keywords (SELECT, FROM, and WHERE) are kept
while the query constants (e.g., column names in a schema)
are abstracted away and replaced with a placeholder #i,
where i is a unique integer that represents the placeholder.
Note that the definition of query structure can be generalized
for any SQL query, and it is not restricted to simple queries.

To determine how many of the incorrect queries are struc-
turally identical to the correct query, we parse each query into
its corresponding query structure. We observe that 790 out of
1197 (66%) of the NLP queries have the same query structure
as the correct query.

Based on our edit distance results, we observe that around
half of the incorrect RAT-SQL queries have an edit dis-
tance less than 40 than the correct gold queries. We also
observe that 790 out of 1197 (66%) of the incorrect RAT-
SQL queries have the same query structure as the correct
query. Therefore, when text-to-SQL tools fail, they return
a query that is close to the correct one. Based on our find-
ings, we propose building a mutation-based tool that auto-
matically enumerates possible patches to repair the incor-
rect text-to-SQL queries.

3 Repairing Text-to-SQL Queries
Figure 2 shows an overview of our approach. First, we run
a text-to-SQL tool that receives a natural language descrip-
tion in English and a database as input, and outputs a SQL
query that captures the user intent. The user can then run
the SQL query returned by the text-to-SQL tool and observe

Table 1: Example of mutation types

Type SQL Keywords Mutation type Example

1 SELECT, GROUPBY, ORDERBY column/aggregate(column) SELECT Students
2 FROM table FROM Classes
3 JOIN table, column JOIN Activities ON Students
4 WHERE, EXCEPT, HAVING column, aggregate, constant WHERE students LIKE ‘%con%’
5 LIMIT constant LIMIT 5

Text-to-SQL
encoder

SQL query

Mutation repair tool

User
input/output

exampleCorrect query

Database

Incorrect query

Natural
language

description Query
structure
encoder

Correct query

Constant
mutator

Structure
mutator

Query
structure
decoder

Incorrect queryK-mutations

Text-to-SQL tool

Figure 2: Overview of our approach to repair text-to-SQL queries

if the output is the expected one. If this is not the case,
then the user provides additional information in the form
of a small input-output example using tables that match the
schema of the database. Synthesis of SQL using examples
is also a common approach to solve this problem, and there
are efficient synthesizers for this task [Wang et al., 2017;
Orvalho et al., 2020; Takenouchi et al., 2021]. In our eval-
uation (§4), we show that our mutation-based approach can
leverage the failed query from the text-to-SQL tool and out-
perform state-of-the-art SQL synthesizers based on examples.
Note that our approach is orthogonal to the text-to-SQL tool
used and can use any of the many available tools.

Our approach considers the incorrect SQL query from the
text-to-SQL tool and starts by extracting its query structure.
We identify each constant’s type using the SQL keywords de-
scribed in Table 1. We then mutate constants (“Constant mu-
tator”) based on the keyword type (e.g., we mutate the table
name for keyword FROM). For cases where a change in con-
stants is not enough to repair the query, we perform a struc-
tural change (“Structure mutator”) in addition to the muta-
tions of constants. If a single mutation is insufficient to repair
the SQL query, our approach increases the number of muta-
tions (“K-mutations”) and repeats this process.

3.1 Single Mutation Repair
Given a query structure, our mutation strategy is to select a
placeholder #i and enumerate over all possible mutations
that are compatible with the type of that placeholder. Since
the search space for single mutations is relatively small, we
can try this approach for all placeholders of a query struc-
ture and exhaust the space of single mutations. Consider the
example in Figure 3 which corresponds to an incorrect SQL
query returned by RAT-SQL for the example shown in §1.
We first extract the query structure with placeholders repre-
sented in brackets. The query can be mutated by selecting a
placeholder and changing that constant. For instance, we can
select the placeholder that contains the constant ‘3’ after the

keyword LIMIT and change it to another constant value, e.g.,
‘1’. Note that, for this particular example, we require a struc-
tural change since the keyword SELECT requires two columns
in the correct solution and more than one mutation since we
need to change the constants ‘Asc’ to ‘Desc’ and ‘3’ to ‘1’.
Structural Repair. As observed in §2 and demonstrated
in Figure 3, there are some queries returned by text-to-SQL
tools that do not match the desired query structure. To
support some of these cases, we consider both the original
query structure and minor modifications of the query struc-
ture. Namely, we consider changes that may involve adding
EXCEPT, WHERE or SELECT clauses as follows.

• EXCEPT clauses. Some queries may be missing an
EXCEPT clause. If the output table of the incorrect query
has more rows than expected, then we modify the query
structure to include an EXCEPT clause and enumerate
through all constants from previous WHERE clauses.

• WHERE clauses. For queries that have output tables
different than the expected size, we can also modify the
query structure to either include a WHERE clause or mod-
ify existing WHERE clauses by adding another condition
(conjunction or disjunction) to the WHERE clause.

• SELECT clauses. For query outputs that have the
wrong number of columns, we add or remove a column,
and enumerate over all possible choices for new columns
to find the correct solution. Figure 3 shows an example
of using SELECT structural changes.

Dependency Analysis. Trying all possible mutations of a
given type may lead to mutations that are not executable. For
instance, if the placeholder is of type column, trying columns
that do not belong to a particular table will lead to an exe-
cution error. To reduce the number of infeasible mutations,
we use information from the SQL schema to perform depen-
dency analysis on the following types of mutation targets.

• Table dependency. We enumerate through table mu-
tation types for queries with JOIN statements based on

SELECT: [airlines.name]
FROM: [routes]
JOIN: [airlines]
ON: [routes.alid] [=] [airlines.alid]
GROUP BY: [airlines.name]
ORDER BY: [Count(*)] [Asc]
LIMIT: [3]

Incorrect query: SELECT airlines.name FROM routes JOIN airlines ON routes.alid = airlines.alid
GROUP BY airlines.name ORDER BY Count(*) Asc LIMIT 3

Encode query string to query structure

Add extra column in SELECT (structure repair), and mutate on ORDER BY (mutation repair)

Potential solution: SELECT airlines.name, routes.alid FROM routes JOIN airlines ON routes.alid =
airlines.alid GROUP BY airlines.name ORDER BY Count(*) Desc LIMIT 3

name

American

Air China

EasyJet

Missing 1 column,
target row at the bottom

Second mutation on LIMIT after first mutation timed out

Corrected query: SELECT airlines.name, routes.alid FROM routes JOIN airlines ON routes.alid =
airlines.alid GROUP BY airlines.name ORDER BY Count(*) Desc LIMIT 1

name alid

EasyJet 2297

Air China 751

American 24

name alid

EasyJet 2297

Row # too high

Figure 3: Example repair of an incorrect RAT-SQL query

their available columns. Our repair data set only in-
cludes inner joins. Inner join statements on two tables
that do not have any overlap columns would not produce
any results. Therefore, we do not enumerate tables in
JOIN statements that do not share at least one column
with preceding FROM statements.

• Column dependency. For each column mutation type,
we enumerate only column names corresponding to the
query’s current table names. We update the list of possi-
ble column names at each iteration of table mutation.

• Where dependency. The mutation type for constants
depends on column types, and only mutations of that
type are considered. To further reduce the search space,
we use the results of the previous outputs for mutation
choices of integer constants. Specifically, we relax the
filter condition after observing a mutated output table
with fewer rows than the correct table. Similarly, we
tighten the filter condition when a mutated output table
has more rows than the correct table. For example, if the
output table from mutating “WHERE student count < 10”
has too few rows, then we eliminate the possible muta-
tion choices with integer values smaller than 10.

3.2 Multi Mutation Repair
Since some queries may require multiple mutations to be re-
paired (see Figure 3), we extend our single mutation repair to
a multi mutation approach with the following procedure:

1. Run our single mutation repair procedure on the initial
query until completion.

2. For queries where we could not find a single mutation
that repaired the initial query, we store all incorrect mu-

tated queries and rank them based on a similarity metric
with the expected output.

3. For each top-ranked query in step (2), we consider that
as our new initial query and repeat this procedure by go-
ing to step (1).

Even though this procedure can repair multiple locations, it
is not scalable. We limit our repair procedure to find at most
2 mutations. However, even with this limited approach, our
experimental results (see §4) show that multi mutation repair
can improve our performance and open research directions to
consider more scalable algorithms for multiple repairs.
Similarity metric. We rank the incorrect queries by com-
paring the contents of the output table of the incorrect query
with the example provided by the user. Consider two multi-
sets M and U that correspond to the values in the output ta-
ble of the mutated query (M) and the values in the example
provided by the user (U). We consider the Jaccard similarity
coefficient between these two multi-sets as follows:

J(M,U) = |M ∩ U|
|M|+ |U| − |M ∩ U|

This similarity metric returns a value between 0 and 1,
where 1 implies tables have the same contents, and 0 means
that the table contents are disjoint.

4 Evaluation
In order to develop and test our repair tool, we use the Spi-
der text-to-SQL dataset [Yu et al., 2018], consisting of 6358
instances in the training set and 1034 instances in the develop-
ment set. In this evaluation, we focus on the development set.
Since our work is centered around repairing queries produced

a) RAT-SQL b) SmBoP

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Top 10+2 MUT
Top 10+MUT

Top 10
Top 1+2 MUT

Top 1+MUT

Top 10+2 MUT
Top 10+MUT

Top 10
Top 1+2 MUT

Top 1+MUT

Percentage of Repaired Queries

C
on

fig
ur

at
io

n

Structural Changes not Required Structural Changes Required

Figure 4: Percentage of repaired queries for different tools and configurations.

a) RAT-SQL b) SmBoP

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Top 10+2 MUT
Top 10+MUT

Top 10
Top 1+2 MUT

Top 1+MUT
Top 1

Top 10+2 MUT
Top 10+MUT

Top 10
Top 1+2 MUT

Top 1+MUT
Top 1

Percentage of Repaired Queries

C
on

fig
ur

at
io

n

Solved with NLP tool (+mutations) Solved with PatSQL

Figure 5: Percentage of repaired queries using PATSQL on top of our approach.

by other tools, we consider two NLP to SQL synthesizers as
a starting point: RAT-SQL [Wang et al., 2020] and SmBoP
[Rubin and Berant, 2021]. Nevertheless, our approach is ag-
nostic to the text-to-SQL tool.

To test if a query satisfies the user intent, we generate
an input-output example by running the gold query over the
databases provided in the Spider dataset. Then we compare
the output of the generated query, over that same input, with
the output of the gold query. All results were obtained using a
dual socket Intel® Xeon® CPU E5-2630 with 64GB of RAM.

We note that the public RAT-SQL model provided on
GitHub does not include the terminals in the generated
queries. Hence, we created a terminal filler which uses three
sources of knowledge: (1) the query without terminals, (2)
the natural language question and (3) the database content.
This constant filler, evaluated on the development set, has an
accuracy of 91.4%. This means that the constant extractor is
able to correctly fill 457 out of 500 queries (from the 1034
queries in Spider development set, only 500 examples have
terminals in its queries).

4.1 Experimental Results
To evaluate the performance of our repair approach, we col-
lect the top 10 queries generated by RAT-SQL and SmBoP. If
we consider only the first query returned (i.e., the one deemed
more likely to be correct), RAT-SQL is able to correctly solve
722/1034 instances, while SmBoP correctly solves 783/1034.
Moreover, if we consider the top 10 rated queries returned by
the beam in each tool, RAT-SQL provides 822 correct queries,

while SmBoP provides 837.
We consider as a baseline the number of instances solved

when using just the first query returned by each of the tools.
Figure 4 shows the percentage of failed queries that we are
able to repair when using different approaches. In this con-
text, 100% means that all failed queries from the text-to-SQL
tool were successfully repaired.

Figure 4a shows the repair success rate on incorrect queries
from RAT-SQL when using one mutation (MUT) and two
mutations (2 MUT). When only trying to repair the first query
(first two bars), we are able to repair 25% of previously in-
correct queries. We also observe that using the top 10 queries
(Top 10), without any mutations, solves 32% of the queries.
When mutating the top 10, our approach is to attempt to repair
each query, one by one and in order, until one of the queries
is successfully repaired. Using these 10 queries as input to
find a repair results in more than 50% of repair success rate.
Finally, note that using two mutations allows the repair of 13
extra queries on top of the previous 50%.

Figure 4b shows the repair success rate on incorrect queries
from SmBoP. Overall, the repair success rate is similar to the
ones in RAT-SQL. Nevertheless, we can observe that using
the top 10 queries does not have the same impact as in RAT-
SQL. This is due to two factors: (1) SmBoP has an higher
success rate than RAT-SQL, failing only on harder instances,
and (2) in general the 10 queries returned by SmBoP are less
diverse than the ones returned by RAT-SQL.

Figures 4a and 4b also show the impact of repairing the
query structure (§3.1). We observe that more instances

0%

25%

50%

75%

100%

RAT-SQL SmBoP
Base Tool

Pe
rc

en
ta

ge
of

So
lv

ed
Q

ue
rie

s
Base

Mutation

PatSQL

Figure 6: Overall results for RAT-SQL and SmBoP.

require structural changes for SmBoP than for RAT-SQL.
Again, this results from less diversity in SmBoP’s query beam
than in RAT-SQL’s beam, i.e., it is more common in RAT-
SQL that one of the top 10 queries has the correct structure.

4.2 Improving results using PATSQL
We also leverage the input-output examples by running a pro-
gramming by example SQL synthesizer. In this case, the SQL
synthesizer is executed after our mutation-based repair tool to
find a query that satisfies the example provided by the user.
We choose PATSQL [Takenouchi et al., 2021] since it is one
of the best performing SQL synthesizers.

Figure 5 shows the repair success rate when executing PAT-
SQL after our mutation-based repair tool for both RAT-SQL
and SmBoP. The first bar (Top 1) corresponds to replacing
our repair tool with PATSQL. However, the success rate of
PATSQL is smaller than our mutation-based repair tool. For
example, in repairing the RAT-SQL queries, PATSQL has a
success rate of 43% while our tool repairs more than 50% of
the queries. Nevertheless, by extending our mutation-based
tool with PATSQL, more than 70% of failed queries can now
be repaired. These improvements indicate that PATSQL is
able to find correct queries that are structurally different from
the ones returned by either RAT-SQL or SmBoP.

Finally, Figure 6 shows the overall percentage of total
queries solved using RAT-SQL and SmBoP as a starting
point. The ‘Base’ part of the bar corresponds to using just the
first query returned by the text-to-SQL tools, while the ‘Mu-
tation’ and ‘PATSQL’ parts shows the contributions of our
mutation-based approach and PATSQL for the final result.

5 Related Work
Text-to-SQL Research in Natural Language (NL) to SQL
semantic parsing has seen an increase in interest, in particular
since the release of the Spider dataset [Yu et al., 2018]. Cur-
rently, most models designed for this task follow the encoder-
decoder framework [Wang et al., 2020; Lin et al., 2020;
Rubin and Berant, 2021] using a neural language model and
a regressive decoding strategy. Other improvements on this
topic include pre-training strategies [Yu et al., 2021].

RAT-SQL [Wang et al., 2020] tackles this problem with
schema-encoding and schema-linking mechanisms that con-
vert the schema and the NL question into a graph. This is

done by considering each word token as a vertex and its re-
lations as the edges while further contextualizing them using
relation-aware attention through transformer layers.

SmBoP [Rubin and Berant, 2021] also uses the same en-
coding process as RAT-SQL, with the main distinction be-
tween the two being the decoding mechanism. SmBoP de-
coder is semi-autoregressive, building the abstract syntax tree
for the generated query in bottom-up style while RAT-SQL
achieves this using a top-down autoregressive approach.

Programming-by-Example Programming-by-Example
SQL Synthesizers use one or more input-output examples
to specify the behavior of the desired query. In recent years
there has been a great number of tools released for this
purpose, such as Scythe [Wang et al., 2017], SQUARES
[Orvalho et al., 2020] and PATSQL [Takenouchi et al.,
2021]. In this work we use PATSQL as a complementary
approach since it performed the best out of the tested tools.

PATSQL uses sketch-based enumeration in order to find a
query that satisfies the input-output examples. This method
works by first generating a skeleton of a query. Then, this
skeleton is completed using the information from the tables
and constants given by the user. PATSQL introduces an im-
proved completion step that is able to prune large parts of the
program space and efficiently find solutions.

Program Repair The goal of program repair is to automat-
ically repair a given buggy program. For that, it is neces-
sary to locate the bug [Wong et al., 2013; Abreu et al., 2006]
and create a patch that repairs it. Mutation-based patch cre-
ation is common for program repair. For instance, GenProg
[Le Goues et al., 2011] uses a search and mutation-based ap-
proach for repair of C programs.

Recent work uses program repair for SQL queries. Guo et
al. [Guo et al., 2018] used fault localization and a decision
tree (DT) algorithm for repairing JOIN and WHERE clauses.
Presler-Marshall et al. [Presler-Marshall et al., 2021] used
a sythesis based repair techniques on student authored SQL
queries. Presler-Marshall et al. found that SQL repair tools
may be useful in an educational context. Our work is the first
to use a mutation-based repair on all SQL clause types in the
context of text-to-SQL queries.

6 Conclusions
SQL queries are challenging to write and require domain ex-
pertise. Recent text-to-SQL tools, such as RAT-SQL and Sm-
BoP, can return queries based on the user’s intent written in
natural language. However, even state-of-the-art text-to-SQL
tools have an accuracy of just over 70%. We observed that
incorrect text-to-SQL queries are often structurally similar
to the correct solution through experimental analysis. This
work introduces a mutation-based repair tool that encodes in-
correct queries into query structures and enumerates possible
patches to produce a correct final query. Experimental re-
sults show that by leveraging a complementary input-output
example provided by the user, our mutation-based approach
can improve the performance of text-to-SQL tools to 86%.
Enhanced with a SQL synthesizer, the success rate of text-to-
SQL tools can be higher than 90%.

Acknowledgments
This work was partially supported by the US National Sci-
ence Foundation (NSF) award CCF-1762363, and by ANI
045917 award funded by FEDER and Portuguese Foundation
for Science and Technology (FCT).

References
[Abreu et al., 2006] Rui Abreu, Peter Zoeteweij, and Ar-

jan JC Van Gemund. An evaluation of similarity coef-
ficients for software fault localization. In Proc. Pacific
Rim International Symposium on Dependable Computing,
pages 39–46. IEEE, 2006.

[Cao et al., 2021] Ruisheng Cao, Lu Chen, Zhi Chen, Yan-
bin Zhao, Su Zhu, and Kai Yu. LGESQL: line graph en-
hanced text-to-sql model with mixed local and non-local
relations. In Chengqing Zong, Fei Xia, Wenjie Li, and
Roberto Navigli, editors, Proc. Annual Meeting of the
Association for Computational Linguistics, pages 2541–
2555. Association for Computational Linguistics, 2021.

[Gan et al., 2021] Yujian Gan, Xinyun Chen, Jinxia Xie,
Matthew Purver, John R. Woodward, John H. Drake, and
Qiaofu Zhang. Natural SQL: making SQL easier to in-
fer from natural language specifications. In Proc. In-
ternational Conference on Empirical Methods in Natural
Language Processing, pages 2030–2042. Association for
Computational Linguistics, 2021.

[Guo et al., 2018] Yun Guo, Nan Li, Jeff Offutt, and Amihai
Motro. Automatically repairing sql faults. In Proc. IEEE
International Conference on Software Quality, Reliability
and Security, pages 500–511. IEEE, 2018.

[Le Goues et al., 2011] Claire Le Goues, ThanhVu Nguyen,
Stephanie Forrest, and Westley Weimer. Genprog: A
generic method for automatic software repair. Ieee trans-
actions on software engineering, 38(1):54–72, 2011.

[Lin et al., 2020] Xi Victoria Lin, Richard Socher, and
Caiming Xiong. Bridging Textual and Tabular Data for
Cross-Domain Text-to-SQL Semantic Parsing. In Proc.
International Conference on Empirical Methods in Natu-
ral Language Processing, pages 4870–4888. Association
for Computational Linguistics, 2020.

[Orvalho et al., 2020] Pedro Orvalho, Miguel Terra-Neves,
Miguel Ventura, Ruben Martins, and Vasco Manquinho.
SQUARES: A SQL synthesizer using query reverse
engineering. Proceedings of the VLDB Endowment,
13(12):2853–2856, August 2020.

[Presler-Marshall et al., 2021] Kai Presler-Marshall, Sarah
Heckman, and Kathryn T Stolee. SQLRepair: Identi-
fying and Repairing Mistakes in Student-Authored SQL
Queries. In Proc. IEEE/ACM International Conference
on Software Engineering: Software Engineering Educa-
tion and Training, pages 199–210. IEEE, 2021.

[Ristad and Yianilos, 1998] Eric Sven Ristad and Peter N
Yianilos. Learning string-edit distance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(5):522–
532, 1998.

[Rubin and Berant, 2021] Ohad Rubin and Jonathan Berant.
Smbop: Semi-autoregressive bottom-up semantic parsing.
In NAACL-HLT, pages 311–324. Association for Compu-
tational Linguistics, 2021.

[Scholak et al., 2021] Torsten Scholak, Nathan Schucher,
and Dzmitry Bahdanau. PICARD: parsing incrementally
for constrained auto-regressive decoding from language
models. In Proc. International Conference on Empirical
Methods in Natural Language Processing, pages 9895–
9901. Association for Computational Linguistics, 2021.

[Shi et al., 2021] Peng Shi, Patrick Ng, Zhiguo Wang,
Henghui Zhu, Alexander Hanbo Li, Jun Wang,
Cı́cero Nogueira dos Santos, and Bing Xiang. Learning
contextual representations for semantic parsing with
generation-augmented pre-training. In Proc. AAAI Con-
ference on Artificial Intelligence, pages 13806–13814.
AAAI Press, 2021.

[Takenouchi et al., 2021] Keita Takenouchi, Takashi Ishio,
Joji Okada, and Yuji Sakata. PATSQL: efficient synthesis
of SQL queries from example tables with quick inference
of projected columns. Proc. VLDB Endow., 14(11):1937–
1949, 2021.

[Wang et al., 2017] Chenglong Wang, Alvin Cheung, and
Rastislav Bodik. Synthesizing Highly Expressive SQL
Queries from Input-output Examples. In Proc. Conference
on Programming Language Design and Implementation,
pages 452–466, New York, NY, USA, 2017. ACM.

[Wang et al., 2020] Bailin Wang, Richard Shin, Xiaodong
Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In ACL, pages 7567–7578. Associa-
tion for Computational Linguistics, 2020.

[Wong et al., 2013] W Eric Wong, Vidroha Debroy, Ruizhi
Gao, and Yihao Li. The DStar method for effective soft-
ware fault localization. IEEE Transactions on Reliability,
63(1):290–308, 2013.

[Yaghmazadeh et al., 2017] Navid Yaghmazadeh, Yuepeng
Wang, Isil Dillig, and Thomas Dillig. SQLizer: Query
Synthesis from Natural Language. Proc. ACM Program.
Lang., 1(OOPSLA):63:1–63:26, October 2017.

[Yu et al., 2018] Tao Yu, Rui Zhang, Kai Yang, Michihiro
Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing
and text-to-sql task. In Proc. International Conference
on Empirical Methods in Natural Language Processing,
pages 3911–3921. Association for Computational Linguis-
tics, 2018.

[Yu et al., 2021] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin,
Bailin Wang, Yi Chern Tan, Xinyi Yang, Dragomir R.
Radev, Richard Socher, and Caiming Xiong. Grappa:
Grammar-augmented pre-training for table semantic pars-
ing. In Proc. International Conference on Learning Rep-
resentations. OpenReview.net, 2021.

	Introduction
	Motivation
	String Analysis
	Structure Analysis

	Repairing Text-to-SQL Queries
	Single Mutation Repair
	Multi Mutation Repair

	Evaluation
	Experimental Results
	Improving results using PatSQL

	Related Work
	Conclusions

